Biodigestores tubulares combinados con sistemas de filtración granular para el tratamiento descentralizado de aguas residuales en la Amazonía ecuatoriana

Autores/as

  • Rocio Jimenez Universidad regional amazónica Ikiam
  • Moises Gualapuro Universidad regional amazónica Ikiam, Computational Biology Program, The University of Kansas
  • Jaime Marti Herrero Universidad Regional Amazónica Ikiam, Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)

Palabras clave:

Aguas residuales domésticas, Biodigestores de bajo costo, Sistemas de filtración granular, Sistemas descentralizados, Calidad del agua

Resumen

En este trabajo se muestran los resultados del monitoreo de una planta piloto de tratamiento de aguas residuales compuesta por un sistema de biodigestores combinado con un humedal artificial. La planta piloto fue implementada en la Universidad Regional Amazónica Ikiam, ubicada en la ciudad de Tena, Provincia de Napo, Ecuador. El sistema consta de tres biodigestores tubulares en serie, uno de 10 m3 y dos de 5 m3´de volumen líquido, seguido de un humedal artificial de flujo horizontal subsuperficial de 20 m2. La planta se monitoreo durante seis semanas, con muestras de entrada y salida a cada componente. Los resultados preliminares muestran que el sistema fue eficiente en la reducción de carga orgánica en términos de DQO (81%), siendo los biodigestores responsables de la reducción mayoritaria (70,3%). Respecto a la reducción de nutrientes, fue posible observar la reducción del 30% de amonio y 16 % de fosfatos. Además, el sistema mostró potencial de reducción de otros parámetros analizados, tales como sólidos volátiles (51,7%) y sulfatos (56,4%). Los resultamos obtenidos indican que la planta piloto cumple con algunos parámetros de la normativa ambiental ecuatoriana.

Citas

Abdel-Shafy, H. I., El-Khateeb, M. A., & Shehata, M. (2014). Greywater treatment using different designs of sand filters. Desalination and Water Treatment, 52(28–30), 5237–5242. https://doi.org/10.1080/19443994.2013.813007

Albalawneh, A., Chang, T. K., & Alshawabkeh, H.(2017). Greywater treatment by granular filtration system using volcanic tuff and gravel media. Water Science and Technology, 75(10), 2331-2341. https://doi.org/10.2166/wst.2017.102

APHA. (2017). Standard Methods. In R. Baird, A. Eaton, & E. Rice (Eds.), Standard Methods for the Examination of Water and Wastewater (23rd ed.).

APHA, AWWA, WEF. Barros, P., Ruiz, I., & Soto, M. (2008). Performance of an anaerobic digester-constructed wetland system for a small community. Ecological Engineering, 33(2), 142–149. https://doi.org/10.1016/j.ecoleng.2008.02.015

Carballeira, T., Ruiz, I., & Soto, M. (2017). Aerobic and anaerobic biodegradability of accumulated solids in horizontal subsurface flow constructed wetlands. International Biodeterioration & Biodegradation, 119, 396–404. https://doi.org/10.1016/j.ibiod.2016.10.048

Ciuk Karlsson, S. (2015). Simulating Water and Pollutant Transport in Bark, Charcoal and Sand Filters for Greywater Treatment. https://pub.epsilon.slu.se/12417/1/ciuk_karlsson_s_150630.pdf

De Anda, J., López-López, A., Villegas-García, E., & Valdivia-Aviña, K. (2018). High-Strength Domestic Wastewater Treatment and Reuse with Onsite Passive Methods. In Water (Vol. 10, Issue 2). https://doi.org/10.3390/w10020099

El Houari, A., Ranchou-Peyruse, M., Ranchou Peyruse, A., Bennisse, R., Bouterfas, R., Goni Urriza, M. S., Qatibi, A. I., & Guyoneaud, R. (2020). Microbial Communities and Sulfate Reducing Microorganisms Abundance and Diversity in Municipal Anaerobic Sewage Sludge Digesters from a Wastewater Treatment Plant (Marrakech, Morocco). In Processes (Vol. 8, Issue 10). https://doi.org/10.3390/pr8101284

Fagbohungbe, M. O., Herbert, B. M. J., Hurst, L., Ibeto, C. N., Li, H., Usmani, S. Q., & Semple, K. T. (2017). The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Management, 61, 236–249. https://doi.org/10.1016/j. wasman.2016.11.028

Handayani, N. I., Yuliasni, R., Setianingsih, N. I., & Budiarto, A. (2020). Full Scale Application of Integrated Upflow Anaerobic Filter (UAF)- Constructed Wetland (CWs) in Small Scale Batik Industry Wastewater Treatment. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 11(1), 27–35. https://doi.org/10.21771/jrtppi.2020.v11.no1.p27-35

Kang, A. J., & Yuan, Q. (2017). Enhanced Anaerobic Digestion of Organic Waste. In Solid Waste Management in Rural Areas. IntechOpen. https://doi.org/10.5772/intechopen.70148

Labatut, R. A., & Pronto, J. L. (2018). Chapter 4 -Sustainable Waste-to-Energy Technologies: Anaerobic Digestion (T. A. Trabold & C. W. B. T. S. F. W.-T. S. Babbitt (eds.); pp. 47–67). Academic Press. https://doi.org/10.1016/B978-0-12-811157-4.00004-8

Lohani, S. P., Khanal, S. N., & Bakke, R. (2020). A simple anaerobic and filtration combined system for domestic wastewater treatment. Water Energy Nexus, 3, 41–45. https://doi.org/10.1016/j.wen.2020.03.004

Martí-Herrero, J. (2019). Biodigestores Tubulares: Guía de Diseño y Manual de Instalación. RedBioLAC. Martí-Herrero, J., Alvarez, R., & Flores, T. (2018). Evaluation of the low technology tubular digesters in the production of biogas from slaughterhouse wastewater treatment. Journal of Cleaner Production, 199, 633–642. https://doi.org/10.1016/j.jclepro.2018.07.148

Martí-Herrero, J., & Cipriano, J. (2012). Design methodology for low cost tubular digesters. Bioresource Technology, 108, 21–27. https://doi.org/10.1016/j.biortech.2011.12.117

Mekonnen, A., Leta, S., & Njau, K. N. (2014). Wastewater treatment performance efficiency of constructed wetlands in African countries: a review. Water Science and Technology, 71(1), 18. https://doi.org/10.2166/wst.2014.483

Merino-Solís, M. L., Villegas, E., De Anda, J., & López-López, A. (2015). The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland. In Water (Vol. 7, Issue 3). https://doi.org/10.3390/w7031149

Moazzem, S., Bhuiyan, M., Muthukumaran, S., Fagan, J., & Jegatheesan, V. (2023). Microbiome Wetlands in Nutrient and Contaminant Removal. Current Pollution Reports. https://doi.org/10.1007/s40726-023-00280-9

Noyola, A., Morgan-Sagastume, J., & Güereca, L.(2013). Selección de Tecnologías para el Tratamiento de Aguas Residuales Municipales: guía de apoyo para ciudades pequeñas y medianas.

Orner, K. D., Camacho-Céspedes, F., Cunningham, J. A., & Mihelcic, J. R. (2020). Assessment of nutrient fluxes and recovery for a small-scale agricultural waste management system. Journal of Environmental Management, 267, 110626. https://doi.org/10.1016/j. jenvman.2020.110626

Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429–448. https://doi.org/10.1016/j.jenvman.2012.08.011

Sharma, M. K., Khursheed, A., & Kazmi, A. A.(2014). Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system. Environmental Technology, 35(17), 2183–2193. https://doi.org/10.1080/09593330.2014.896950

TULSMA. (2015). Texto Unificado de Legislación Secundaria del Ministerio del Ambiente: Norma de calidad ambiental y de descarga de efluentes al recurso agua (pp. 1–184). Ministerio del Ambiente.

UNEP. (2023). Wastewater: Turning Problem to Solution. In Wastewater: Turning Problem to Solution - A UNEP Rapid Response Assessment. https://doi.org/10.59117/20.500.11822/43142

Van den Brand, T. P. H., Roest, K., Chen, G. H., Brdjanovic, D., & van Loosdrecht, M. C. M. (2015). Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World Journal of Microbiology and Biotechnology, 31(11), 1675–1681. https://doi.org/10.1007/s11274-015-1935-x

Vidal, G., & Hormazabal, S. (2018). Humedales Contruidos: diseño y operación. Universidad de Concepción.

Wear, S. L., Acuña, V., McDonald, R., & Font, C.(2021). Sewage pollution, declining ecosystem health, and cross-sector collaboration. Biological Conservation, 255, 109010. https://doi.org/10.1016/j.biocon.2021.109010

Weralupitiya, C., Wanigatunge, R., Joseph, S., Athapattu, B. C. L., Lee, T.-H., Kumar Biswas, J., Ginige, M. P., Shiung Lam, S., Senthil Kumar, P., & Vithanage, M. (2021). Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal. Bioresource Technology, 334, 125240. https://doi.org/10.1016/j.biortech.2021.125240

Yu, S., Liu, S., Yao, X., & Ning, P. (2022). Enhanced biological phosphorus removal from wastewater by current stimulation coupled with anaerobic digestion. Chemosphere, 293, 133661. https://doi.org/10.1016/j.chemosphere.2022.133661

Descargas

Publicado

2023-12-27

Cómo citar

Jimenez, R., Gualapuro, M., & Marti Herrero, J. (2023). Biodigestores tubulares combinados con sistemas de filtración granular para el tratamiento descentralizado de aguas residuales en la Amazonía ecuatoriana. Revista RedBioLAC, 7, 44–53. Recuperado a partir de http://revistaredbiolac.org/index.php/revistaredbiolac/article/view/78

Número

Sección

Artículos largos