Potencial de los biodigestores de bajo costo o “Low-Tech”: soluciones de ingeniería y perspectivas para una mayor eficiencia

Autores/as

  • Jaime Martí Herrero Regional Amazonica Ikiam, Centre Internacional de Mètodes Numérics en Enginyeria.

Palabras clave:

Biodigestores, Bajo costo, Condiciones psicrófilas, Biogás, Consorcios microbianos, Digestión anaerobia, Calentamiento solar

Resumen

Este artículo presenta una revisión de los biodigestores de bajo costo o baja tecnología y sus soluciones de ingeniería para mejorar la accesibilidad y eficiencia en el contexto de la digestión anaerobia. Se resalta la importancia de la comprensión profunda de los sistemas y procesos involucrados y su fácil adaptación a condiciones psicrófilas, en contraposición a la idea errónea de que la digestión anaerobia difícilmente puede ocurrir a temperaturas por debajo de 25 °C. Se destaca el papel de los consorcios microbianos psicrotróficos y su efectividad en la producción de biogás a temperaturas más bajas. Se analizan estrategias de ingeniería como la agitación neumática, la sumersión forzada, la calefacción solar pasiva y el desarrollo de biofilm para mejorar el rendimiento de los biodigestores de bajo costo. Este artículo desafía la idea de que los biodigestores de bajo costo o baja tecnología son inferiores.

Citas

Akindolire, M. A., Rama, H., & Roopnarain, A. (2022). Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process. Renewable and Sustainable Energy Reviews, 161, 112394. https://doi.org/10.1016/j.rser.2022.112394

Chae, K. J., Jang, A. M., Yim, S. K., & Kim, I. S. (2008). The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresource technology, 99(1), 1-6. https://doi.org/10.1016/j.biortech.2006.11.063

Chanakya H. N., Reddy B. V. V., & Modak, J. (2009a) Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesterse: A case study from India, Renewable Energy, 34(2), 416e420. https://doi.org/10.1016/j.renene.2008.05.003

Chanakya, H. N., Sharma, I., & Ramachandra, T. V. (2009b). Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste. Waste Management, 29(4), 1306-1312. https://doi.org/10.1016/j.wasman.2008.09.014

Gaballah, E. S., Abdelkader, T. K., Luo, S., Yuan, Q., & Abomohra, A. E. F. (2020). Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester. Energy, 193, 116758. https://doi.org/10.1016/j.energy.2019.116758

Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599-614. https://doi.org/10.1016/j.rser.2016.01.071

Gounot, A. M. (1986). Psychrophilic and psychrotrophic microorganisms. Experientia, 42, 1192-1197. https://doi.org/10.1007/BF01946390

Gupta, R. A., Rai, S. N., & Tiwari, G. N. (1988). An improved solar assisted biogas plant (fixed dome type): A transient analysis. Energy conversion and management, 28(1), 53-57. https://doi.org/10.1016/0196-8904(88)90011-8

Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., ... & Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515-2522. https://doi.org/10.2166/wst.2016.336

Jaimes-Estévez, J., Zafra, G., Martí-Herrero, J., Pelaz, G., Morán, A., Puentes, A., ... & Escalante Hernández, H. (2020). Psychrophilic full scale tubular digester operating over eight years: Complete performance evaluation and microbiological population. Energies, 14(1), 151. https://doi.org/10.3390/en14010151

Kafle, G. K., & Chen, L. (2016). Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste management, 48, 492-502. https://doi.org/10.1016/j.wasman.2015.10.021

Kemausuor, F., Adaramola, M.S., Morken, J. (2018). A review of commercial biogas systems and lessons for Africa. Energies, 11, 2984. https://doi.org/10.3390/en11112984

Krause, M. J., Detwiler, N., Schwarber, A., & McCauley, M. (2022). An evaluation of solar thermal heating to support a freeze-thaw anaerobic digestion system for human waste treatment in subarctic environments. Renewable Energy, 198, 618-625. https://doi.org/10.1016/j.renene.2022.08.055

Li, Y., Chen, Y., & Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied energy, 240, 120-137. https://doi.org/10.1016/j.apenergy.2019.01.243

Li, J., Jin, S., Wan, D., Li, H., Gong, S., & Novakovic, V. (2022). Feasibility of annual dry anaerobic digestion temperature-controlled by solar energy in cold and arid areas. Journal of Environmental Management, 318, 115626. https://doi.org/10.1016/j.jenvman.2022.115626

Martí-Herrero, J. (2011). Reduced hydraulic retention times in low-cost tubular digesters: two issues. Biomass and Bioenergy, 35(10), 4481-4484. https://doi.org/10.1016/j.biombioe.2011.07.020

Martí-Herrero, J., Alvarez, R., Rojas, M. R., Aliaga, L., Céspedes, R., & Carbonell, J. (2014). Improvement through low cost biofilm carrier in anaerobic tubular digestion in cold climate regions. Bioresource Technology, 167, 87-93. https://doi.org/10.1016/j.biortech.2014.05.115

Martí-Herrero, J., Alvarez, R., & Flores, T. (2018). Evaluation of the low technology tubular digesters in the production of biogas from slaughterhouse wastewater treatment. Journal of Cleaner Production, 199, 633- 642. https://doi.org/10.1016/j.jclepro.2018.07.148

Martí-Herrero J. (2019). Biodigestores tubulares: Guía de diseño y manual de instalación. WISIOS-REDBIOLAC. Ecuador. https://www.beegroup-cimne.com/biodigestores-tubulares-guia-de-diseno-y-manual-de-instalacion/

Martí-Herrero, J., Soria-Castellón, G., Diaz-de-Basurto, A., Alvarez, R., & Chemisana, D. (2019). Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. Renewable Energy, 133, 676-684. https://doi.org/10.1016/j.renene.2018.10.030

Martí-Herrero, J., Castro, L., Jaimes-Estévez, J., Grijalva, M., Gualatoña, M., Aldás, M. B., & Escalante, H. (2022). Biomethane potential test applied to psychrophilic conditions: Three issues about inoculum temperature adaptation. Bioresource Technology Reports, 20, 101279. https://doi.org/10.1016/j.biteb.2022.101279

Patinvoh, R. J., Taherzadeh, M. J. (2019). Challenges of biogas implementation in developing countries. Current Opinion in Environmental Science & Health, 12, 30–37. https://doi.org/10.1016/j.coesh.2019.09.006

Petropoulos, E., Shamurad, B., Tabraiz, S., Yu, Y.,Davenport, R., Curtis, T. P., & Dolfing, J. (2021). Sewage treatment at 4° C in anaerobic upflow reactors with and without a membrane–performance, function and microbial diversity. Environmental Science: Water Research & Technology, 7(1), 156-171. https://doi.org/10.1039/D0EW00753F

Poggio, D., Ferrer Martí, I., Batet Miracle, L., & Velo García, E. (2009). Adaptación de biodigestores tubulares de plástico a climas fríos. Livestock research for rural development, 21(9), 1-14

Reichardt, W., & Morita, R. Y. (1982). Temperature characteristics of psychrotrophic and psychrophilic bacteria. Microbiology, 128(3), 565-568. https://doi.org/10.1099/00221287-128-3-565

Safley Jr, L. M., & Westerman, P. W. (1990). Psychrophilic anaerobic digestion of animal manure: proposed design methodology. Biological Wastes, 34(2), 133-148. https://doi.org/10.1016/0269-7483(90)90014-J

Sasse, L., Kellner, C., & Kimaro, A. (1991). Improved biogas unit for developing countries. Vieweg and Sohn, Germany. Available at: https://energypedia.info/wiki/Improved_Biogas_Unit_for_Developing_Countries

Sasse, L. (1988). Biogas plants. Vieweg & Sohn. Wiesbaden. Available at: https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/1799# Schumacher, E. F. (2011). Lo pequeño es hermoso (Vol.7). Ediciones Akal. https://www.akal.com/libro/lo-pequeno-es-hermoso_34584/

Song, Z., Zhang, C., Yang, G., Feng, Y., Ren, G., & Han, X. (2014). Comparison of biogas development from households and medium and large-scale biogas plants in rural China. Renewable and Sustainable Energy Reviews, 33, 204-213. https://doi.org/10.1016/j.rser.2014.01.084

Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., & Castro, L. (2023). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173, 113097. https://doi.org/10.1016/j.rser.2022.113097

Walter, K. M., Smith, L. C., & Stuart Chapin III, F. (2007). Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1856), 1657-1676. https://doi.org/10.1098/rsta.2007.2036

Zeeman, G., Sutter, K., Vens, T., Koster, M., & Wellinger, A. (1988). Psychrophilic digestion of dairy cattle and pig manure: start-up procedures of batch, fed-batch and CSTR-type digesters. Biological wastes, 26(1),15-31. https://doi.org/10.1016/0269-7483(88)90146-2

Descargas

Publicado

2023-12-27

Cómo citar

Martí Herrero, J. (2023). Potencial de los biodigestores de bajo costo o “Low-Tech”: soluciones de ingeniería y perspectivas para una mayor eficiencia. Revista RedBioLAC, 7, 4–11. Recuperado a partir de http://revistaredbiolac.org/index.php/revistaredbiolac/article/view/74

Número

Sección

Estudios de caso